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Mathematical Methods For The Design of Gravity
Thrust Space Trajectories
by

Michael Andrew Minovitch
Abstract

It is possible to propel a free-fall space vehicle
from planet to planet to any place in the entire solar
system by utilizing the gravitational perturbation of each
planet passed as a powerful vehicle thrust source. Except
for guidance, these trajectories do not require any rocket
propulsion after the vehicle leaves the vicinity of the
launch planet. Consequently, since these thrust forces in-
crease in direct proportion to vehicle mass, as described
by the equivalence prigg;ple, it does not matter how massive
the vehicle is once it is lauﬁched. This concept of vehicle
propulsion has had a significant effect in the planning of
future interplanetary space missions. We shall call these
trajectories "Gravity Thrust Space Trajectories™.

This dissertation presents a collection of mathematical
techniques which I have developed in the course of studying
Gravity Thrust trajectories. A strict mathematical treat-
ment would involve the unsolved N-body problem of analyti-
cal mechaniecs. This difficulty is circumvented by assuming

that, at any given instant, the trajectory is strictly
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ED Keplerian with respect to either a nearby planet or with
respect to the Sun. The techniques are essentially vector
in character and are ideally suited to studying Gravity
Thrust trajectories in a three-dimensional space. Much
use is made of Lambert's equations for Keplerian motion.
«The ambiguities usually inherent in the elliptical forms
of these equations are completely removed. Solutions to
problems corresponding to specific missions such as multi-
ple planetary encounters, solar-probe, and out-of-ecliptic
trajectories are given. Although this work is intended to
be purely theoretical, relevant practical aspects will a;so

be discussed.
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Introduction

The central subject of this dissertation involves
planetary perturbations and, in particular, how they effect
the motion of free-fall interplanetary space vehicles. Be-
fore going into the mathematical details of the paper, it
is interesting to review the great lengths to which some re-
searchers have gone to compensate for the perturbation fac-
tor, which has, ironically, turned out to be the key to many
interplanetary missions previously thought to require ex-
tremely powerful launch vehicles.

If a comet or free-fall interplanetary space vehicle
moving under the gravitational influence of the Sun remains
sufficiently far from any of the various planets, its path
is essentially that of-a conic section. These Keplerian
orbits are well known solutions of the two-body problem.

On the other hand, if the object passes close by a planet,
the resulting gravitational perturbation usually becomes
non-negligible, and, thus, the orbit's constant Keplerian
nature relative to the Sun will be destroyed. The early
pioneers in astrodynamics tended to view these planetary
perturbations as annoying disturbances of their purely
Keplerian orbits. For example, Hohmann (1), while con-
sidering the flight dynamics of interplanetary reconnais-
sance vehicles, discovered an extremely rare elliptical

trajectory which would (if it were not for the perturbations)
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allow a vehicle to intersect the orbits of both Venus
and Mars respectively just as these planets passed by,
and return to Earth. To make his trajectory realizable
he simply cancelled out the perturbations by applying
rocket thrust equal to the perturbating force but of op-
posite direction. Unfortunately, Hohmann had to use up a
total Av of 4.1 km/sec to cancel out these perturba-
tions. Later, in 1956, Crocco (2) devised a more sophisti-
cated method of cancelling out these perturbations. He
discovered an equally remarkable constant elliptical path
which would also pass the orbits of Venus and Mars just as
these planets appeared, but in feverse order. To this ideal
undisturbed path he added the resulting perturbation encoun-
tered by passing mars at a short distance. The effect of
this perturbation was calculated and compared to the undis-
turbed path. Finally, the perturbation due to passing Venus
at various distances was introduced and examined. By vary-
ing the Venus passing distance by the right amount, he was
able to cancel out the effect of the Mars perturbation and
obtain a final trajectory very close to the original undis-
turbed path. More recent trajectory analysts (3) often |
avoided considering perturbations altogether by simply not
allowing a free-fall reconnaissance vehicle to pass very
close to a perturbing planet.

When these classical trajectory design procedures were

used to obtain numerical orbit determinations via modern



P

iy,

high speed digital computers, the results only confirmed
the conclusions reached earlier by the crude hand computa-
tions of Hohmann (1) and Oberth (4). Except for relatively
simple fly-by missions to Mars or Venus, it was concluded
that most interplanetary missions would require extremely
high launch energies and/or very long flight times. The
dual planet fly-by trajectories of Hohmgnn and Crocco were
found to require so much energy that some analysts viewed
them as "interesting academic pastimes™ (Ch. 5 ref. 3).
Nevertheless, the early 1960's was an era of enthusiasm for
space travel, and rough designs for the required_super
boosters (known variously as Novas, Super-Novas and Sea
Dragons) were drawn (5).

-0Of the many aspects involved in the planning of inter-
planetary space missions,trajectory design is the most im-
portant. Trajectories determine launch velocities, and
launch velocities, together with payload mass, determine
required launch energies and launch vehicle size. In order
to minimize the amount of rocket thrust which would otherwise
be required for some interplanetary missions, I proposed a
method of trajectory design (6) which was based primarily
upon the perturbational forces a nearby planet can impart to
a passing space vehicle. This method offered the interesting
theoretical possibility of free and unlimited space travel
anywhere in the entire solar system bylsimply bouncing the

vehicle off the back sides of various moving regions of
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perturbation which, conveniently enough, encompass planets.
Except for maintaining proper guidance, no on-board rocket
thrust is required once the vehicle is launched. The thrust
required for interplanetary mobility is obtained via precisely
calculated gravitational interactions with passing planets.
Control is exercised by seiecting pre-calculated planetary
approach trajectories. Since these perturbational thrust
forces increase in direct proportion to vehicle mass, they
can be viewed as rocket engines with almost unlimited power.
Once the vehicle is launched, it will not matter if its mass
is 103 kgm or 109 kgm. An engine of this type keeps the
entire Earth in its orbit around the Sun. These engines are
"clean burning" and do not add to vehicle invironmental pol-
lution.

The quantitative study of dynamics in a three-dimensional
space is most conveniently made with the use of vector analy-
sis. Hence, a convenient vector method will be developed
for defining Keplerian orbits. With these analytical tech-
niques, no assumptions regarding the geometry of the solar
system will be necessary. It will not matter how eccentric
a planet's orbit is or how much its orbital plane is inclined

to the ecliptic.



Chapter I

Mathematical Preliminaries

1.1 A Vector Treatment of the General Two Body Problem

We begin by writing down the equations of motion for
two bodies of mass my and m, moving under their mutual
gravitational influence. These equations are obtained by

equating the individual dynamical forces to the gravitational

forces.
%t # -7,
my 5 = 'GmlmZH__?r-—" L 50 P
dt r
12
m - = -Gm m - - (10102)
2 2 2L 3
- dt r12

The vectors ?1 and ?ém denote the object's position vectors

relative to some arbitrary inertial coordinate system 3% .
The quantity Tio is defined as the distance between my
and my (which we assume to be spherically symmetric) and
G 1is the universal gravitational constant. Let M denote
the total mass of the system and ; the center of mass.
Hence it follows that

M = my + m,
(1.1.3)

- —

-3
MP = miry + myr, -

-+ —+
Define new vectors Rl and R2 by



— -+ -+
Ry =54y ~F By =25~ P (1.1.%)

By substituting these equations into (1.1.3) we obtain

—

. -+ = e .. -
MP —ml(Rl+P) + m2(32+P) =MP+m; Ry + m,R, *.
Hence it follows that
.= - —'
Moreover, by differentiating with respect to time we obtain

— -+
de dR2

mgg *Ooge - ©

and, by denoting the time derivative of ﬁi by Vi (L = 1,0),
this equation becomes
s - S
From equation (1.1.3) it follows that
23 %% %%
d"P _ 1 2
M T W3 T W .
dt dt

Hence by making use of the equations of motion (1.1.1) and

(1.1.2) we obtain

M— = ———=(7,-TAs+T~-T,) = O.
dt2 3 Mo s B
T2
Therefore
dp .

——P

ct
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where ?b is a constant. Now since equations (1.1.1) and

(1.1.2) are invariant under Galilean transformations

— - g pa.g
ek e ?Ot we may assume Vi, = O and P =0 . We now

differentiate the vector R; xV; with respect to time t.

-
—+ -+ s —+ & —+ dvi

e

Hence by making use of (1.1.1) (or (1.1.2) and noting that
V. xV, =0 btai
VixVi = we obtain

- -+ —k (R -R )
Ry xV;) = By [-omy—5—1-] .
Ry,

iL(§i><ﬁi) =0 (i =1,25 j=1,25 i #3j) .

Consequently, the vectors §i><ﬁi are constant and shall be

denoted by Kiﬁi where Ki is some constant scalar to be

determined later. Hence we have

—_

Ay = ﬁix'{?i ) (1317

These vectors are proportional to the angular momentum vectors
of my (1 =1,2). From equations (1.1.5) and (1.1.6) it

follows that

-

A:h. = (-

4By L R;) x (- —lv ) = (—'1) Nkl . (1.1.8)

| my© 7373

W L!a

Throughout this paper we shall denote unit vectors by

placing the symbol * over the quantity instead of the usual

—+
. Hence the unit vector corresponding to ﬁi will be



denoted by

vy by

dR. 4R dR.

=+ i s i i2 _ ,2a i
Ajh; = RjR; x (Rygg + 3¢ By) = RRy xq¢ -

Hence, by making use of the equations of motion a third

time we obtain
v
d = -+ _ ___i et ¢
A gg(Vy xhy) = Ny gg x by

A

R, - R . 4R,
-—ij (—i—‘3‘—i) X R§ (Ri x =)

dat
Ry5
2 . -~
Gm.RS dR. dR.
- 1" 3 ey i '_* Lo i
19
2 ~ -~
Gm.R dR. dR
e e 1 - e = I i §
3 [(Ry*—3¢)R; - (Ry *Ry)5%
12
4R, R

However, since we have

dR. dR.
—@* ~ " s _ sad 1 ; ~ ~ " 1
atRy *Ry) =0 B R ERy ey

which, in view of (1.1.5), implies Ry +—Z =0 (i,k =

Consequently, we obtain



2 -~
-Gm ;R : dR.
- e I - R S (R - 1
312 J

However, since 312 = Rl P R2 we may write, according to

(Ledsh)

Therefore,

"
[#p]
5
s
|

By defining a constant .scalar p; by

o 2 ’
by = 6o (5D (1.1.9)

we obtain

dR.
a7 Ty = 31
13ty xhy) = pygy

3
An integration of this equation yields

= =
ks Vg iy pi(ﬁi+gi) (1:1:10)

where the constant vector of integration is denoted by “igi .
It is easy to show that equations (1.1.5), (1.1.6) and (1.1.8)

imply
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e, == e, i (i #3) (1.1.11)

The vectors ﬁi and gi are clearly orthogonal to each
other and hence represent only five arbitrary constants of
integration. Consequently, the four vectors ﬁi ’ 31 and
ﬁz ’ 32 represent ten of the twelve constants of integratibn
corresponding to the two second order vector differential
equations (1.1.1) and (1.1.2). The last two constants of
integration will correspond to the time of perifocal passage tp.

Now in view of the fact that the vectors ﬁl and ﬁz
are constant, equations (1.1.7) and (1.1.8) imply that the
motion of my and m, is confined to a fixed plane perpen-
dicular to the vector ﬁl = ﬁ2 =h . We define the angle Bi

(which is called true anomaly) by

e -
ei" :_i ei_

X (i =1,2)
measured in the direction of motion from 31 to ﬁi . From
(1.1.5) and (1.1.11) it follows that 91 = 92 . We shall

denote this angle by 6 . Hence from (1.1.7) and (1.1.10) we

obtain
2 2_ - —+ -+ _ - =+ -+
Ahy SXhy e (Ry x Vi) = MRy« (Vy x hy) = pyRyo(Ry + e5)

Consequently

2.2

kihi

R Hi
i~ 193, & (1.1.12)
113
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which in view of (1.1.5) and (1.1.11) can be expressed as

h

_ Hi
Ri =T+ ¢ cos o ' (1.1.13)

2.2
Ajhy

where e = lgll = Iggl . This is the general equation of a
conic section in polar form with eccentricity e and semi-

latus rectum %i given by

(1.1.14)

Hence both bodies move along conic paths of equal eccentricity
and semi-latus rectum 4, given by (1.1.14). Now by (1.1.9)
it follows that

2 3 3
vz = om ()7 = om(RI(RP - (@)’

Hence by (1.1.8) we obtain

G
klhl my 22 m,
1 (m2)3 1 2
my K2
The relation betweén %i and aj where ay denotes the semi-
major axis of the i'® orbit is
_ 2
4 =a; |1-ef| - £1:1:15)
Hence
- ()
81 m A
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By making use of (1.1.10) we may write

-+ - —r — ~ - e = 4 -+ =+ =
Ahy x (Vg xhy) = pyhy x By +e;) -7\i[(hi-hi)vi - (hi-Vi)hi] )

~+ —+ —+
But, since hi is orthogonal to both Ri and Vi s, we obtain

= P‘j_—* -+
i1
By defining hi as
s
X T=E
g

we obtain one of our most important equations

-+ —+ - s
vi —hiX(ei+Ri) . (101-16)

We sum up these results by the following theorem:

The Orbit Representation Theorem. Any body moving under the

gravitational influence of a second body will describe a conic
path with respect to 3 whose geometry is completely defined
by two constant and mutually orthogonal vectors ﬁi and gi
The velocity vector ?i corresponding to any point ﬁi on
the orbit is given by (1.1.16).

Suppose my is the mass of the Sun or a particular planet
and m, is the mass of a free-fall interplanetary space vehicle.
Then mli» m, and we may set the ratio m2/ml = 0. In this
case ﬁl = 0 and ﬁl = 0 . The subscript 2 may therefore be

omitted from ﬂz and 32 without confusion. Hence we may

express (1.1.7) and (1.1.16) as

n =85 (1217
V=hx(®+e) (1.1.18)

respectively, where

2 =h-1'-‘2- : (1.1.19)
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and

b= Gmy .- (1.1.20)

R = __;Qr—- (1.1.21)
1+e.R
and
L= all-—e2l (1:1:22)
respectively.

Let us now dot multiply each side of equation (1.1.18)

by v . Then, making use of (1.1.19), we obtain

Vz_'-'-' [-‘}-(ﬁ xg) +-\-fb-(?1 xf{)]

Il

L2 xB) +BeExP)]

2 -+ A 2
Ve = [¥5Re+ (2 + R) + h<]
h2R:§2

By making use of (1.1.21) and (1.1.22), this equation becomes

2

Ve = pl -

o =

1, (1.1.23)

=i

where the negative and positive signs correspond to ellipti-
cal and hyperbolic orbits respectively. This equation, which
is well known in Celestial Mechanics, will be called the
"orbital energy equation'".

In observational astronomy a heliocentric ofbit B
usually defined by the so-called classical orbital elements.

They are expressed by a, e, i, @, @ and tp and defined
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Figure 1. A Gecomctric Description of the Classical
Orbital Zlements
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by figure 1 where 3§ 1is taken as an elliptic coordinate
—h ~5
system. By denoting the component forms of e and h

by

-+ -
g = (el,e2,e3) h = (hl’hZ’h3)

it is easy to obtain the following transformation equations:

h

h
1 - ——l = _l._.._
cos i o sin T
cos w = ﬁig— cos & =,__:E§__ €11.2h)
e h sin i e
& = (3.3)1/2 = — W :
(h7|1 -e“])

where n = (cosQ, sinQ, 0) . If the classical orbital ele-
ments are given, the orbital vectors P and E can be ob-

tained by

n

e(cosQcosgp~- cosisinQsinw)

e(sinQcosw+ cosicosQsinw)

e sin o sin i

. |
3 (1.1.25)

h; =h sin Q sin i
h2 = <h cos  sin i
h3 =h cos i

where
1/4

h = [—”—2—] (1.1.26)

all - e |
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The names of these classical orbital elements are as

follows:
a = semi-major axis
e = eccentricity
i = inclination
= longitude of the ascending node
w = argument of perihelion
tp = time of perihelion passage

-

Most problems in the new field of astrodynamics are
quite different from those of Celestial Mechanics. For
example, velocities, which are of prime importance in
astrodynamics, are hardly ever used by astronomers in their
orbit determinations of comets. Hence, in view of (1.1.18),

we shall adopt the vector representation for defining orbits.
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1.2 Lambert's Equations

In the above formulation we have seen how the shape
and orientation of an arbitrary conic orbit can be defined
in a three-dimensional space § by two mutually orthogonal
orbital vectors ¢ and h . It remains, therefore, to
relate the position vector R of an object, moving on a conic
orbit, with time. In celestial mechanics this is almost al-
ways done by Kepler's equations. These equations provide a
relationship between a time interval tj"ti > 0 and the
orbit's semi-major axis a , eccentricity e and true
anomalies ei = B(ti) and Bj = e(tj) . It is possible, how-
ever, to express this time interval completely independent
of the orbit's eccentricity. These equations are called
Lambert's equations, named in honor of Johann H. Lambert
(1728-1777) who discov;;;a them in 1761. They are generaliza-
tions of an equation discovered earlier by Euler for the
special case of parabolic orbits. Unfortunately, the genera-
lized equations of Lambert suffer from serious ambiguities
and are rarely used in celestial mechénics. We shall discover,
however, that by a suitable formulation of these equations,

it will be possible to completely eliminate these ambiguities.

Let us define the angle eij by

-+

which will be measured in the plane of motion from ﬁi B ﬁ(ti)

to Ej = ﬁ(tj) in the direction of motion where t; < tj .
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[o]
Consider the case where 0 < eij < 180 . In this case the

elliptical form of Lambert's equations can be expressed by

ty -ty = N[e -sin €) - (3 - sin )] (1.2.1)
a3
where 1 = ?f" The variables € and & are related to
the vectors ﬁi and Ej'by the equations
R, +R, +d,. = 4a sin® £
i J i] 2
_ -1

where dij = Iﬁj-—ﬁil . Unfortunately, the angles & and &

are not uniquely determined when the vectors ﬁi and ﬁj are

given.
_’
Let R represent the region bounded by the arc ﬁiEH
and the vectors ﬁi and ﬁj . Suppose R does not contain

the vacant focus. Then by defining

Sy (Ri+Rj+dij)/2
X4 = l-(sij/a)

equation (1.2.1) can be expressed as

- . 2 Lo=1 c o 2 .o -1
tj ti ull l-—yij + sin Fyy= l-—xij - sin Xij]‘ (1.2.2)
On the other hand, if R does contain the vacant focus,

(1.2.1) becomes
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tj--ti =qlr+4/1 - yfj + sin-lyij +4/1 - xfj + sin_lxij]. (1..2.3)

Both equations (1.2.2) and (1.2.3) correspond to the case
where eij < 180° . Their differences demonstrate the
serious ambiguities in the elliptical form of Lambert's
equation since, in general, one has no way of knowing if R
does or does not contain the vacant focus. Similar ambigui-
ties exist when 180° £ eij < 360° . In this case, if R
does not contain the vacant focus

t'j By & nfar-4/1 -yfj = sin-ly. .+ 1 —xij + sin_lxij] (1.2.4%)

1)

and if R does contain the vacant focus
t,-t =T][1r—1/l-—y2 —sin-ly -’\/l-xe.—sin_lx..] : (1.2.5)
d 3 i ij ij i
Hence, corresponding to one unique Kepler equation there
corresponds four different Lambert equations (1.2.2), (1.2.3),
(lf2.h) and (1.2.5). It is easy to understand therefore why

Lambert's equations are rarely used in practice.
The ambiguities in the hyperbolic and parabolic form of
Lambert's equations are due only to the two cases 0O < eij < 180°

and 180° <L Bij < 360° . 1In the first case, the hyperbolic

equation becomes

tj -t = T][A/xizj -1- cosh_lxi Y y?. -1+ cosh“lyij] (1.2.6)

J 1)

where x.. and vi are now defined by

1J J

x..=]_+(s.j/a)

lJ 1 =l+(Si.—d.-)/a -

Yij e &
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If 180° < 855 < 360° the equation becomes

c+ YV ygj-l-Fcosh—lyij]. (L:237)

J

2 -1
N[ xij-—l-—cosh X3

c'-
|

ct
"

For the special case of parabolic orbits Lambert's equa-

tion becomes (assuming O < eij < 180°)

-1 [z .32 3/2
tj-ti - 3“[: [Sij - (Sij"dij) ] (1.2:8)

while, if 180° £ eij < 360° , the equation becomes

_1[3 .37 3/2
ty-ty = 35 [siy +(s35-d39)7 1 - (1.2.9)

Equations (1.2.8) and (1.2.9) are the Euler equations.

Our main purpose for obtaining the above representations
of Lambert's equations lies in the fact that they are more
closely related to the-points__ﬁi and ﬁj . The primary

independent variables will be ti’ t 41, and ﬁj . The

T
quantity to be determined will be aJ. It is clear, however,
that in order to determine a , one must know before hand
whiéh equation to use. (A derivation of the Lambert function
(1.2.1) and its various elliptical and hyperbolic variants

can be found in [7]. A discussion concerning the ambiguities

is also given.)
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1.3 Removing the Ambiguities from Lambert's Equations.

Let F¥ and F denote the vacant and occupied foci
respectively for any arbitrary elliptical orbit. ILet the
points ﬁi and ﬁj be denoted by P and Q respectively.
Then

_— —_—

FP = Ry Q = Rj

Hence, by the definition of an ellipse we may write

FP + F*P = 223 Q + F¥Q = 2a .

Consequently,

(FF+Fq+d;,) = 3(ha -FWP -FQ+a;,) .

|
(S] [

54
Since the sum of any two sides of a plane triangle in Euclidean

space 1s greater than or equal to the third side it follows

that
Sij £ 2a . (1.3.1)
—+ —
Let us'now assume that Ri and Rj are fixed vectors
with 0. < 180° and view equations (1.2.2) and (1.2.3) as

1]
functions of the single variable a . By substituting a = Sij/2

into (1.2.2) and (1.2.3) we obtain identical expressions for

the time interval tj--ti which we shall denote by TEJ

— b =i s Ay s 1/2 25

13 . =101 ;[ 1:4 £4 ] M e Ff
T Y = (1- ) +% sin " ( -1)+ (1.3.2)
M A/ 2 Lsy; S5 3 2 S5 3 L

It is easy to see that as a -+ oo the right hand side

of (1.2.3) also goes to oo . However, if we take the limit
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of the function given by (1.2.2) as a -+ oo it can be
shown that the result is a function identical to that
appearing in the right hand side of (1.2.8). (This is not
immediately obvious and finding this limit involves some
analysis. A modified version of L'Hospital's rule can be
applied to a suitable representation of the function as a

quotient of two functions both tending to zero as a -+ oo .)
1j

Let us define this limiting function by TA . Hence
ij =_;\[§ 3/2 ) 3/2

It can be shown (by examining the derivative of (1.2.2))
that the slope of this function is always negative in the

8: i
domain —%l <a<o.
If .the limit a -+ O 1is taken for the right hand side
of (1.2.6) the result-is zero. It can be shown however that
on taking the limit of this function as a -+ oo the result
is again identical to the function given by (1.2.8) and hence
equal to Tia . These results are in agreement with what one
would expect from the physical situation since a =+ co repre-
sents passing to the limiting case of a parabolic orbit. By
taking the derivative of (1.2.6) it can be shown that the
slope of this function is positive in the interval O < a<oo.
Figure- 2 is a graph of the elliptical functions (1.2.2) and
(1.2.3) together with the hyperbolic function (1.2.6) for
- - o
fixed R, and R, such that 6,. < 180
1 ] 1. ;
A similar analysis can be made for the case

180° < 8;5 < 360° . In this situation if a = s;j/2 1is
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L (1.2.6)
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substituted into (1.2.4) and (1.2.5) the results are

identical and equal to TiJ , Where in this case

’ 2d;
ij %3_ ; 11(1 l])] +%— sin-l -S'—l'l-)ff . (1.3.4)

i] 1]

If the limits of the functions given by (1.2.5) and (1.2.7)
are taken as a -+ oo it can be shown that the result is a
function Tij identical to that defined by (1.2.9). Hence

in this case

iJ “ l‘J_[ 3/2 + (sij_diJ)B/g] < f1:3:5)

The function (1.2.4) tends to o as a -+ o . The general
graphs of the elliptical functions (1.2.4%), (1.2.5) and the
hyperbolic function (1.2.7) corresponding to the case when
180° < 055 < 360° 1is shown by figure 3.

Consider the class ©(0,180) of all .possible conic orbits

-

passing through the fixed vectors R; , ﬁﬁ
The domain of the corresponding Lambert and Euler functions

o]
where O(Bij<180 .

will be a ¢ [Oy,0] and the range of these functions will be
tjl-ti € [O,00] . We shall now partition this range into

four subregions defined by
- ij ij TR -
by =ty e [000] =[0,T3") U Ty" U (T}, Ty’] U (T 5 o0]

These subregions will be denoted by

Ry

[O,Tij) Ry = pid
(1.3.6)

"
)
= b
[ A
8
e

v ]
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Hence, if tj"ti e Ry , the corresponding orbit must be
hyperbolic and the correct Lambert function associated with
the position vectors ﬁi and ﬁj is uniquely given by
(1.2.6). If tj-ti e R, , only one unique orbit will
satisfy this condition. It is parabolic and the corre-
sponding Euler function is given by (1.2.8). If tj--ti eR3
the orbit must be elliptical and the correct Lambert function
is given by (1.2.2). Finally, if tj-—ti € ‘RLP , the orbit
must also be elliptical with Lambert function given by (1.2.3).
A similar partitioning can be carried out for the case
180° X eij < 3600. These partitionings will be key to re-
moving all of the ambiguities in the Lambert-Euler equations.
It is easy to show that the period P corresponding to

elliptical orbits is given by

- 3
e a
P 2T T ; (1.3.7)

Consequently, if the integer Zij denotes the number of
complete revolutions the object makes while on an elliptical
orbit during the time interval tj"ti y the term ZijP
must be added to each of the above elliptical functions
(1:2:2); 1:2:3); .24 emd {1.5.95).

Let ££ denote the correct Lambert (or Euler) function
corresponding to given values of the vectors Ei and ﬁj :

These functions can then be represented uniquely according

to the following criterion:
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Case 1. O < @,. (mod 3600) Z 18097

1]
( :
(1.2.6) if t3-t;e®
by - b =££=) (1.2.8) if t3-t;eR, (1.3.8)
(1.2.2) if (tj-t3) -Z;5PeRy

\ (1.2.3) if  (b5t5) -2, PeR,

Case 2. 180° < 655 (mod 360°) < 360°

((1.2.7) if b, -t e Ry
(1.2.9) if t;-t; eRy
(1.2.5) if (tj-t3) -2;;P ey

\- (1.2.%) if (b5 -t;5) ~ZyPeRy,

by =y =g = (1.3.9)

This formulation of Lambert's equations is completely
free of ambiguities. Given two vectors ﬁi and ﬁj together
with the corresponding flight fime tj-ti ﬁthe direction
of motion and Zij aféhélSO'assumed known), the correct
Lambert function can be identified by the above criterion

and used to calculate the orbit's semi-major axis.
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1.4 Determination of an Orbit from two Position Vectors

and Time of Flight.

Let ﬁi and Ej correspond to two given position
vectors of an object moving on an elliptical orbit at

times t, and tj respectively. Suppose

8 ﬁ. < 180° and t; < ts . Since the orbital

1559 J

ij lies in the plane of motion defined by ‘ﬁi

and ﬁj y there exists two scalars q; and qj such

1
_’
-
e

vector

that

- -+

-

-+
After dot multiplying both sides of this equation by Ri
and ﬁj respectively, we obtain (with the help of (1.1.21)

and (1.1.22)) the system

2 -+ -+ -
QR + q3R; Ry =435 -Ry
R. -R R =4..-R
.*R. +q. 2l -
e T S - M
where &ij denotes the orbit's semi-latus rectum. The

solution is

_ 2 -+ =+

2 -+ -

-
where D = (RiRj)2 - (R.oﬁ.)2 #0 . Now, it follows from

(1.4.1) that
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After substituting (1.4.2) into this equation and sub-

stituting the result into

aij(l-egj) =‘P/ij ? (1011'03)

one can obtain

) -+ -+ ~ 5. 5

L.
+ (—éd-- ) DEQas (1.4.4)

Omitting the algebra, it is easy to show that, for a given

value of a;. > a this quadratic equation will, in

1] m ’
general, admit two real and positive roots, {£§) and %éﬁ).
We can assume that %éﬁ) < L£§) . Hence, in view of (1.4.3)
these roots will give..rise to two possible eccentricities;

ei%) S e(2) s which correspond to %iﬁ) and %i?) re-

ij
spectively. Consequently, since we assume £é?) < ££§) y
it follows from (1.4%.3) that ei?) > eéﬁ), Hence, there
exists two possible orbits passing through ﬁi and ﬁj that

have the same value for the semi-major axis. These orbits

will correspond to different values for tj"ti . This has

already been observed during our study of the graphs for
elliptical orbits shown in figure 2. Omitting the details,

it can be shown with the aid of the geometfy of figure 4 that the
(1) (2)

i3 ¥ %13

Lambert functions (1.2.2) and (1.2.3) respectively. It can

different eccentricities e correspond to the

be shown by elementary calculations involving the roots of
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Orbit 1

Construction of two possible elliptical orbits
passing through two fixed points ﬁi’ ﬁj with

constant semi-major axis aj 5 and Bij < 180°
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(1.%.4) and making use of (1.4.3) that

1] le
(1.4.5)
and
2 $0) o _2 170 1/2 1/2
€53 [l-—di(sij-Ri)(s -Ry)[1-x; 3v; 5- (- le) (1-y; )77 7137%.
: (1.4.6)

By a similar analysis involving hyperbolic orbits, one can
show that the eccentricity functions corresponding to (1.2.6)

and (1.2.7) are given by

e “[l-+E%—<sij-ni)(sij-aj)[xijyij+(x§j-1)1/2(y§3~)1/2-1]}1/2
1

(1.%.7)

and

1)1/2(y§j_1)1/2]}1/2

e§?)-[1+-d2 (siJ -R; )(s -R. )[xljle (xij
i
(1.%.8)
respectively.

We are now in a position to solve the orbit determination

problem of this section. Let ﬁi and ﬁj denote two posi-

tion vectors of an arbitrary Keplerian path at times €y

and tj respectively. We shall assume that the direction

of motion is known and that eij < 360o . Then, by (1.3.8)

and (1.3.9), the orbit's semi-major axis can be calculated.

The orbit's eccentricity can be determined via (1.4.5)-(1.4.8).
The semi-latus rectum %ij can be obtained by (1.1.22).

Hence, the orbital vector gij can be obtained by (1l.4.1)
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and (1.4.2). The second orbital vector Eij can be

obtained by

—+ —+
- R: »¢ Ra
ij :i '_.'J_;_—.__,.'"]—hl'] 3 (l.l+.9
where hij is given by (1.1.26). The positive or negative
sign depends upon 6.. and the direction of motion.

1]
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Chapter II

Gravity Thrust Space Trajectories

2.1 Notation

It is convenient to represent Gravity Thrust space
trajectories by Po - Pl - P2 -, Pn . In this repre-
sentation Po denotes the launch planet and Pi

th planet passed. The

(i =1,2,...4n-1) denotes the i
terminal point is denoted by Pn.. Since, for our purposes,
no thrusting maneuver is required at Pn y this point need
not be a planet. For example, it may be a comet, another
free-fall interplanetary space vehicle or a point several
astronomical uynits above the ecliptic plane, which would
normally be very difficult to reach via a classical direct
transfer trajectory from P, - Hence, in these representa-

tions n 2 2 . The following additional notation will be

employed throughout this paper:

s = heliocentric equational coordinate system (1950.0)
Zy = parallel translation of ¥ to center of Pi
o s O S
W.R.T. = with respect to
P;,-P;41 = transfer trajectory from P; to Piiq 1 =203152,s009n=1)
ti = time of closest approach to Pi
R(t) = position vector of vehicle W.R.T. ¥ at time t
ﬁi(t) = position vector of P; W.R.T. £ at time ¢
Ty = region of gravitational influence of Pi

e (%) = position vector of vehicle W.R.T. Z. at time t
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distance of closest approach to surface of Pi
velocity vector of Pi W.R.T. £ at time t
velocity vector of vehicle W.R.T. 3z at time ¢t
velocity vector of vehicle W.R.T. z; at time t
times at which vehicle enters and leaves

T3 respectively

orbital vectors of Pi"Pj (1 =05152 ewnyti=1l4

j = i+l) W.R.T. 3 respectively

orbital vectors of vehicle inside Ty W.R.T: Ei

respectively

semi-major axis and semi-latus rectum of Pi"Pj
(i = 0,1,2,...4yn-13j = i+l) W.R.T. £ respectively
semi-major axis and semi-latus rectum of vehicle's

orbit inside <T. W.R.T. %.

i i respectively.

——
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2.2 Fundamental Assumptions

Exact theoretical solutions to the problem of finding
a Gravity Thrust trajectory of the form PO-Pl-—P2-°-- -Pn
are not known. This is essentially the unsolved N-body
problem. However, our solar system has certain physical
characteristics which can be utilized to obtain approximate
solutions. All of the planets move about the Sun on nearly
constant elliptical paths. Furthermore, when a free-fall
vehicle approaches sufficiently close to a passing planet,
the vehicle's path (for all practical purposes) becomes
hyperbolic relative to the planet. When the vehicle leaves
the vicinity of the planet, the Sun begins to dominate its
motion, and the path once again becomes elliptical relative
to the Sun. The pre-encounter and post-encounter elliptical
paths may be entirely different. Indeed, in some cases, the
post encounter trajectory will become hyperbolic. Hence, it
will be assumed that, at any given instant in time, the ve- -
hicle will be moving on a strictly Keplerian path either
hyperbolic relative to a nearby planet or elliptical (or hy-
perbolic) relative to the Sun.

The region of space surrounding a planet in which a
vehicle moves on a hyperbolic path relative to it will be
called the planet's "gravitational region of influence", or
"activity region". It will be taken to be a spherical region

of radius p* , given by the formula

2/5 _

m
* = R _(R) 2.2.1)
p Rp M@ (
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In this formula m, and Mg denote the masses of the
planet and Sun respectively. The distance between the Sun
and the planet is denoted by Rp . The activity sphere can
be shown (8) to be the locus of points where (viewed from

£;) the perturbation on the vehicle from the Sun is approxi-
mately equal to the perturbation from the planet (viewed from
$). Table A is a list of approximate values for p* , corre-
sponding to the various planets as calculated by setting R

P
equal to the planet's semi-major axis.

Table A. Approximate Radii of Planetary Activity

Spheres

Planet : RP(A.U.) : p¥(A.U.)
Mercury 0.387 0.000747
Venus | 0.783 0.00412
Earth a 1.000 0.00618
Mars  1.524 0.00387
Jupiter 5.203 0.387
Saturn 9.539 0.349
Uranus 19.182 0.347
Neptune 30.058 0.577
Pluto 39.601 0.240

Figure 5 is a simplified two-dimensional picture of the
motion of a vehicle on a Gravity Thrust trajectory during
the time it is in the vicinity of a particular planet P; -
The vehicle enters and leaves p.'s activity sphere at points
A and C at times t;; and t,, respectively. When it
enters 7T, , the planet is at D ; and when it leaves T; ,

the planet is at F . The points B and E correspond
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Figure 5.

-— Part of P.-P, near Pi

//—*'ri at time tiZ
f "Ci at time ti;

i *i+l

37

Vehicle's trajectory near P.
the Sun

with respect to
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respectively to the positions of the vehicle and the planet
at the time of closest approach t, . Suppose the perturba-
tion of Py is neglected. Then a vehicle moving on an
interplanetary orbit corresponding to P;_; -Pj would be at
B, at time t; . Similarly, a vehicle moving on an orbit
corresponding to P;- P4 would be at By and at time t,.
Since figure 5 is drawn with respect to I , the trajectory
between A and C 1is not Keplerian. Figure 6 cescribes
this part of the trajectory with respect to Z; . In this
frame of reference, the perturbing planet is at rest, and

the trajectory of the vehicle is hyperbolic.

In addition to our principle assumption of Keplerian
motion, we shall add two additional assumptions which are
relatively minor. Since we are not concerned with the launch
and terminal phases of our trajectories, the perturbation of
P, and the possible ﬁgffurbation of P, at the initial and
terminal points will be neglected. Furthermore, we shall

take the center of P  and P, as the initial and terminal

points respectively.



r(r- Surface of Pi

E

Figure 6.

Hyperbolic Encounter Trajectory

39
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2.3 The Fundamental Gravity Thrust Trajectory Problem

(Boundary Conditions)

Let P, = Py= P ~eve= Py represent a given Gravity
Thrust trajectory profile. By this terminology we shall
mean that the planets P, (i =0,1,2,...,n-1) are specified,
as well as the order in which they are to be encountered.

If P, 1is not a planet, its ephemeris or coordinates are
assumed to be known. By physically realizable trajectories

we mean those trajectories which have positive distances of
closest approach d; at each encountered planet

P, (s 1,2,...,n-1) . The problem of determining a physically
realizable trajectory of a given profile and given launch
date t_ and first planetary closest approach date t ,

will be called the "fundamental Gravity Thrust trajectory
problem of astrodynamics.'" Although this formulation of the
problem does not uniquei§.detérmine these trajectories, it
alleviates what might otherwise be rather difficult analytical
problems,

One example of a Gravity Thrust trajectory profile is
Earth-Venus-Earth, These are simple round trip free-fall
reconnaissance trajectories of Venus. More ambitious pro-
files can be obtained by utilizing the more powerful pertu-
bation fields of the outer planets. An example would be
Earth-Venus-Mars-Earth- Saturn- Pluto-Jupiter-Earth (page 39,
Ref. 6). 1In general, the total number of different Gravity

Thrust trajectory profiles of the form Po-Pl-pz-...-pn

having n planetary encounters is gurl,

This concludes the conceptual formulation of Gravity

Thrust trajectories. The analytical study can now be undertaken.
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2.4 The Energy Exchange Equation

Since our pre-encounter and post-encounter trajectories
will be different Keplerian paths relative to the Sun, the
energy required to realize these trajectory changes must
come from a gravitational interaction with the passing planet.
The amount of energy which will be exchanged depends upon
the vehicle's approach trajectory.

Suppose t.; < t < t., . Then, according to the notation

of section 2.1, it follows that

R(t)

]

Bi(t) +p;(t) .

Hence,
V(6 = V,(t) + vy (1) (2.%.1)

Upon squaring both sides of this equation we obtain
V20t 0) =V2(t, ) +2F, (£, ) o% (tes) #v2(t,4) (3 =1,2)  (2.4.2)
ij e X R O TR e i % G i

However, by making use of the energy equation for hyperbolic

orbits (1.1.23), we may write

2 ~ 2 1

But since pi(tij) = p: (j = 1,2), we conclude that
2 2
vi(t;1) = vi(t;0) (2.%.3)

Substituting this result into the difference of the two
equations given by (2.4.2), we obtain
VA(t;0) - VAt ) =2, o [T, () - Vo (0], (24.4)
i2 il R A S R e
In obtaining thi ; h d v =V =V
n obtaining this equation, we have assume Ii(til) = Vi(tiz)-—vi.

Since the arc swept out by the planet about the Sun during the
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time the vehicle spends in its sphere of influence, is
relatively short, this assumption will introduce very little
error. It is not, however, essential in our analysis. Now,

in view of (2.4.1), we may write
IACTERACIES (CPIER (CHS
Upon substituting this result into (2.4.4), we obtain
v (ty0) - vA(tgp)] = VTVt p) - V(g DD . (2.4.5)

This equation represents the amount of energy exchanged
between the planet P; and the vehicle (of unit mass). It
will be referred to as the Energy Exchange equation., It will
play a major role in the solution of all our trajectory

problems.
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2.5 A Solution to the Fundamental Gravity Thrust Tréjectory
Problem
Let S denote the center of the Sun. Then, on an
interplanetray scale, the vectors SE " éﬁl , and é%z
(see figure 4) will be almost identical. With this assumption,
the initial interplanetary transfer trajectory Bo By
(for the time being, the subscript i will be equal to 1)
can be obtained by the method given in section 1.4. The
position vectors ﬁi-l and .ﬁi of P, ; and P, at times
t; 1 and t; respectively can be obtained from a planetary
ephemeris. The resulting orbital vectors Ei—l,i and ﬁi-l,i
will be very close to the true orbital vectors, Let tia

represent a trial value for this date. Then, by making use

of an ephemeris for P,,; , the corresponding trial vector

-+

R;,; can be calculated. Hence, the corresponding trial orbi-
- -’;_--- = = ] -
tal vectors ei,i+1’ hi,i+l can also be obtained via section

1.4. DNow, in view of the orbit energy equation (1.1.23), it

follows that

2 2 1 1
Yl tun)~-N"(Lyy | i ( - Y5 {2.5:1)
i2 il Ks ai-l,i 3 i41

where . = GMg . Now, by making use of (1.1.18), we may
write

-+ - - -+ -+ — A -+ —+ ~
Vftv(tiZ)'V(til)]'_Vi'[hi,i+lxcei,i+1+Ri)'hi-1,iX(ei-1 ; R .

’
(2.5.2)
It is clear that the right hand sides of (2.5.1) and (2.5.2)

are functions of t Let G(ti+l) denote the scalar

i+l -
function which is defined by
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5

1 1 - = -+
. = - - 2. e T . . ,~+R.

} hi~l,i ® (ﬁi_l,i'*ﬁi)] . (2.5.3)

Consequently, in view of the energy exchange equation (2.4%.5),

a solution for t;4 can be obtained by solving the equation
G(ty,q) =0 . (2.5.4)

It is obvious that solutions to (2.5.4) can not be easily
obtained by purely énalytical processes. The use of a high
speed digital computer will be absolutely essential. Assuming
a computer is available, a solution can be obtained as follows:
Let t;. 4 be an initial value not too far removed in time
from t; , so that it can be assumed that (2.5.4) will not
be satisfied for any t in the interval ¢, <t < t;,, . Let
At; denote a suffig;gptly small time interval such that
(2.5.4) is unlikely to yield two distinct solutions within
the time interval &ti+1 . Then t,., 1is incremented by

steps of (10 %)At, When the sign change occurs, (lO'O)Ati+1

il *
is subtracted from t, ., , and the incrementing continues with

the still smaller step size (107 1)At, This process can

i+l °©

be repeated until a value of t is found which satisfies

- o 2
lG(ti+l)l < € for any arbitrarily small number e . (Of
course ¢ will have to be compatible with the number of
significant decimal places carried along in the computations.)
It should be noted that finding a solution to (2.5.4) is
equivalent to finding a transfer trajectory Py = Pygp which

will yield an asymptotic departure speed from P, equal to

the asymptotic approach speed (i.e., such that v(t12)==v(til).
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See section 2.4%).

Now, since

-+ —+ a
Vityp) =hy g 5 x (o5 q 5 +Ry)
and
-+ =+ =F &
V(tio) = by 449 x (& 549 + Ry,

the asymptotic approach and departure velocities relative

to P; can be obtained by

]

V(tg) = Vit - ¥y

and

— _ = -+
respectively. Therefore, by making use of the energy equation
(1.1.23), the semi-major axis a; of the encounter trajectory

can be obtained by

*
_—— .p'.p'
a; = aL A : (2,5.5)
vi(typ)-2py
Moreover, by studying figure 5, we find
bi
tan @i = E;
Consequently, since
b, 2
= 3+
b e Jl +(a ) ’
it follows that
-
cos ﬁi 5 (2.5.6)

8 ¢

From the figure, we may also write

V(t;1)V(t;p) = v(t;Iv(t;o)cos 2§ - 9.)
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Combining this result with (2.5.6), we obtain

2v (t.
e =.{ ; . } (2.5.7)
vo(tsq) - V(typ) V(o)

The distance of closest approach to the surface of P; can

now be easily computed by

d, = ai(ei- 1) - x, (2.5.8)

i i ®

where r; denotes the radius of P; . If d; turns out to
have a negative value, the solution t,_, which was found for
(2.5.4) is discarded. The incrementing is continued from a
new initial value t;,, +At;,, , where ti4 wes the previous
solution. When a new solution to (2.5.4) is obtained, the
above calculations are repeated so that a new distance of
closest approach is obtained. This process is repeated until
a positive value for d; is obtained, or until ¢t; 4 - t;
becomes unreasonably long.

Suppose a positive value for di is obtained. 1In this
case the orbital vector Ei can be immediately calculated
from

V(ty)) - V(Ep)

8. = = = o5 15 (2.5.89)
IV(tgy) - ¥t |

which follows directly from figure 5. Also, since h; can

be obtained by

I_L.
hy =w/a.(e?l- 5o (2.5.10)

the second orbital vector can be obtained by
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V(t,) x ¥(t.o)
_ il - iz hy . ©(2.5.11)
Rt ) x (t;p) |

i
During this entire process, the values of t,; and t.,

were completely unknown. These times can now be calculated

by making use of the energy equation (1.1.23). Hence,

tiz-ti:: f — _l__ ’
a

where q; = a;(e; - 1) . After performing the integration

we find
o
Bi2 - & =, uy ©Co- By (2.5.12)
where
2
— 1 *
B; = ay log[aiel (ai +p; + ai)]

Since t;,, - t; =t; - t;; , Wwe can obtain t;1 by

Eon =t = (Byp = €Y » (2:5:13)

By referring to figure 5 once again we notice that, if
t; <t < t;o, the position vector Ei(t) can be calculated
by

p5(t) = p;(t)[cos 8,8 + sin 0, (h; x &)1,

where 0., = X €,

g i 3i(t). Hence, the vectors Bi(til) and

3i(t12) can be calculated by
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* %A . * 2 A
gi(til) = pi[cos 6;e; - sin Bi(h:.L X ei)] (2.5.14)
and
X * A W A
Bi(t;p) = pilcos 038, + sin 0 (h; x &)1, (2:5:19)
where

Lo
* i 1
cos 0. = - - 1| =
o [pii }ei

v o 2, %
sin ei = 1l - cos Bi -

In the above analysis i = 1. Hence,these calculations
only represent a possible solution for the first part of the
trajectory P, - Py - Pp . However, by successively incre-
memting i to i+l and repeating the above calculations be-
ginning with finding an acceptible solution to (2.5.4) and
continuing through (2.5.15) until i = n-1) is reached, a
complete physically realizablé trajectory P, - Py - Pp -«..- P
will be obtained. (A detailed step by step set of computer
instructions corresponding to this solution can be found on
page 41 ff of reference 6).

In determining the above solution, a certain amount of
error was introduced at each step by assuming SE = §E1 = 5%2 .
This was necessary because the precise points at which the
vehicle enters and leaves each successive activity sphere
relative to ¥ can not be calculated until Si(til) and
gi(tiz) (i=1,2,...,n-1) are known. However, this error
will in fact be extremely small so that, for all practical

purposes, the above solution can be assumed to be exact.
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Extensive computations at J.P.L. have revealed that the
solution gives remarkably accurate trajectories. For a
more detailed discussion concerning accuracy, see pages
20 and 52 of reference 9. However, it is possible to
calculate a solution to any desired degree of accuracy by
using only the assumptions of section 2.2. This can be
achieved by successive approximations.

Let the above solution correspond to the first approxo-
mation., In order to obtain the k+l'th approximation, the
transfer orbits P, 1 - P; are obtained by substituting
the vectors ﬁ(ti_l’z) = ﬁi-l(ti-l,Z) +.Si-l(ti-l,2) and
ﬁ(tj_,l) = ﬁi(ti,l) + Bi(ti,l) , together with the flight
times ti,l - ti-1,2 , into the method of section 1.4 ,
where the vectors on the right hand sides are obtained by
the k'th approximation. All of the above calculations
(2.5.4) - (2.5.15) must be repeated (i = 1,2,...n-1) for
each successive approximation. It is difficult to construct
an analytical proof that this process will converge to a
solution. On purely physical grounds, however, it is clear
that the approximations will converge and converge very rapidly.
In practice, however, this is unnecessary since the first
approximation is sufficiently accurate to enable the exact
orbit to be determined which corresponds to the actual physical
case where all the perturbations of all the planets in the solar

system act on the vehicle simultaneously (page 52, reference 9).
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Chapter III

Some Extremal Problems in Gravity

Thrust Trajectory Design

3.1 Determining the Planetary Approach Trajectory which

will Extremize the Post-Encounter Energy

In this chapter we shall be concerned with the problem
of determining the various planetary approach trajectories
corresponding to a given initial transfer P - P; , which
will extremize certain physical properties of the post en-
counter trajectory relative to the Sun. Hence, unless
otherwise stated, the initial transfer, determined by ﬁo(to)
and ﬁl(tl) from the initial data (i.e., PyoPys to’tl) as
discussed in section 1.4), is assumed to have been accomplished.

The following notation will be used throughout this chapter:

el
]

(Rl’RZ’R3) = position vector of Pl at time ty E.T. =

P

vb = (ul,uz,uB) = velocity vector of Py at time t; W.R.T. Z

31 = (V,Vy,V3) = asymptotic approach velocity vector of
vehicle at time ty7 VW.R.T. Z

32 = (x,y,2) = asymptotic approach velocity vector of
vehicle at time typ W.R.T. £

31 - (vl,vz,v3) = asymptotic approach velocity vector of
vehicle at time t17 W.R.T. Z4

?2 = asymptotic departing velocity vector of

vehicle at time t12 W.R.T. El
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d = distance of closest approach to surface
of Py

r = radius of Py

P

Let Fl(x,y,z) denote a scalar function of vz(tlz)
defined by

7 R -
Fl(x,y,z) = Vz = Vl - va'(vz-_vrl)

Hence, in view of the above notation,

Fl(x,y,z) = xz + y2 - z2 - 2(ulx + ugy + u3z) + 0, (3.1.1)

where o 1is a constant defined by

_ -+ = 2
0= 2V,Vy - V] . (3.1.2)

This constant depends upon the initial transfer trajectory
Py~ Py which we assume to be already determined. Now, in
view of the energy exchange equation (2.4.5), the class of

all possible post encounter trajectories can be characterized

by
Fi(x,y,2) = 0 . (3.1.3)
The total energy E of a post encounter trajectory is
given by
2 p
E=3$Vy - 2 . (3.1.4)
P

We shall now determine those velocity vectors (x,y,z)
which will extremize E subject to the constraining condi-
tion Fl(x,y,z) = 0 . This can be done most conveniently by

the Lagrange multiplier method. Hence, the extremals of E

will be solutions to the following system of equations:
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aFl

BE & 21,
X hl X 0
oF
8E _ i
By Kl 3y 0
oF
JE _ S
Az Kl Dz 0
Fl =0
The first three equations yield
"= Ko b |
Zz = },0 uB
where
2)\1
)\ = -2-——--—
(o] )\.1"'1 ‘

Upon substituting these equations into the fourth equation,

we obtain a quadratic equation in Ao » with solutions given

by

By making use of the fact that ?2 = Vz - ﬁp together with

(3.1.2), we obtain

N =1t g,
P
where \321 = |$l| = v ., Substituting these values of Ao

into (3.1.5), we obtain two vectors which extremize E .

These are
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-+ _ _-!"—r A ‘

Vo = (1 + Vp)vp (3.1.6)
and

-+ - ..Y._.-_’ !

Vo = (1 - Vp)vp, (3.1:7)

The magnitude of these velocity vectors are

Vo = Vp + v
and

V5 = IVP - v|
respectively. Consequently, the velocity given by (3.1.6)
will maximize the energy of the post-encounter trajectory.
On the other hand, the second velocity vector given by
(3.1.7) will minimize the post-encounter trajectory's energy.
It is interesting to notice that if v = Vp » then 62 given
by (3.1.7) will be zero, and the vehicle will fall directly
into the Sun. Also, if VP < v , a departing velocity
given by (3.1.7) will enable the vehicle to reach a retrograde
orbit about the Sun (assuming 4 > 0).

Llet & = ¥ ?p, 31 . Then, for a maximum energy post-

encounter trajectory, the velocity increment &% = 32 - Gl ’

supplied by the perturbing planet, can be expressed as

av o= [(?2--\?1)2]1/2 = V-J2(l-cos ) .

Hence, the maximum possible velocity which can be given to the

vehicle is

BV e = 2v . (3.1.8)

After selecting which post encounter velocity vector is

desired (e.g., (3.1.6) or (3.1.7)), the required planetary

o

approach trajectory can be easily computed. For example,
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according to section 2.5, we obtain

I
pqP
a; =t (3.1.9)
V - 2‘_],1
-+ =
where v = mlvl—$1f= ,/(Vl-Vp)z g
2v? L
el = { ) Y } (3.1.10)
v —Vl'VZ

-+ = -+ -+ -+ = .
where Vytvp = (Vl—Vp)*(Vz-VP) . The distance of closest
approach d; , given by

d = al(el—l) - rp .11

may be negative. For large planets such as Jupiter, Saturn,
Nepture, and Uranus, however, this distance will be usually

positive. 1In this case,

Vi -V
1 -
-e+1 - —:;""'"'-:,:—2— ey (3.1.12)
and
S (VD) x (V)
hl = —— = = h1 " (3.1.13)
I(Vl-VP) (Vz-vpl
where
o
hl Al e el (3.1.14)
al(el—l)

For relatively low mass planets such as Venus and Mars,
the maximum energy post-encounter trajectory corresponding
to (3.1.6) will generally result in negative distances of

closest approach. Hence, we shall now consider the problem
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of extremizing the post-encounter trajectory's energy
when the distance of closest approach is specified. This
will introduce another constraining condition which 32
must satisfy.

Let d be a given distance of closest approach. Then,

in view of (3.1.11), we have

d+r

= 1 +

I, -
e A . (3,1.15)

However, since ?1 is known, the asymptotic approach speed

v can be obtained by

— =
vE Wy - Vpl g

Hence, the semi-major axis a; of the hyperbolic encounter

trajectory can be determined by (3.1.9). Therefore, in view

of (3.1.15), specifying the distance of closest approach is

equivalent to specifying the eccentricity e . By making

use of (3.1.10), we obtain

UV, = V(1 - %)

|
This equation can be expressed as
Fo(x,y,z) =0, (3.1.158)
where
Fz(x,y,z) = ViX + Voy + vz - ¥ (3.1.17)
and

-+ =+ 2 2
Y=V1'VP+V 1 = -9
=1
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To extremize E with two constraining equations by
Lagrange'!s multiplier method requires the use of two
undetermined multipliers Kl and Ao - The system of

equations which will determine the extremal vectors will

now be
oF oF
3E =1 skt -
ax kl ax ) ax 0
oF oF
oE _ — —
0y Kl oy Ao oy 0
oF oF
9E _ 4 271 2
0z kl 3z 7\2 92 0
Fl =0
F2 . 0 .
The first three equations reduce to
X=mv - 2%
Yy = M1V = M4z (3.1.18)
%5 0yt~ 1M ’
where
Ao 2X1
T T 27126

Substituting these equations into the second constraining

equation, one finds

-+ =+
Y + (Vpovl)ﬂz

M1 =

v
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When these results are substituted into the first con-

straining equation, we obtain the solutions

2
2 v 1
n1=12-[e1-2+(e1-1)/
e
1
Zuled - 1yh~
g = -1
= \"/ e2 sin
p 1 v
and
N - v2 2 2 2 1
1= 2 [el-2- (e7-1)
1
.2v(ef--1)1/2
np = 7 -1,
Vp el_51n ¥

-+ ~r
vhere | = ¥ Vp, vy -

2 tan q;]

1/2 tan q;]

The desired exXtremal vectors can now

be obtained by substituting these values of n; and n, into

(3:1418) «
via (3.1.12), (3.1.13), and (3.1.14).

The required approach traj

ectories can be determined
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3.2 Determining Planetary Approach Trajectories which
Extremize Post-Encounter Perihelion and Aphelion

Distance

In the previous section we have seen that a free-fall
space vehicle approaching a sufficiently strong planetary
gravitational field could use the field to achieve a retro-
grade post-encounter trajectory about the Sun. In order to
visualize the required 'ﬁz to achieve this orbit and its
relation to all other possible post-encounter trajectories
corresponding to a given Po = P1 transfer, it is conven-
ient to view Fl(x,y,z) = Q0 as a surface in a Cartesian
velocity space I, . This surface is a sphere of radius v
centered at Vp . Figure 7 illustrates this surface for
a particular Po - P1 transfer trajectory, where v > VP .
In the figure, ‘32(11Aand ?2(2) represent the two ex-

tremal velocity vectors (with respect to Pl) which corre-

spond to (3.1.6) and (3.1.7) respectively. The retrograde

2
orbit corresponds to vé ) . An arbitrary post-encounter
velocity vector is shown by ﬁz . Consequently, when v > VP,

it is possible to send the vehicle either onto a retrograde
orbit or onto an impact course with the Sun, Either of
these two maneuvers would be extremely difficult to achieve
by an ordinary on-board rocket engine.

A solar impact or deep space trajectory would be useful
for an unmanned instrumented probe designed to measure en-
vironmental properties of space in regions very close to

or very far from the Sun. If v > VP » it will be possible
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Figure 7. Velocity Surface (Hodosurface) of WV for all
Possible Post-Encounter Trajectories Corresponding
to a given Po_Pl Transfer wiien v > Vp-
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to obtain two different solar impact trajectories. They
can be easily calculated by substituting Vz =+ ﬁpvz into

the energy exchange equation (2.%.5) and solving for V, .

For 32 = - ﬁpvz we obtain
— A -+ A D -+ -+ 2 1/2
= - . B oR - 'V -[-v
V2 VprRp) & [(Vpe1p” - 2vpev, 1]

2 S a2, 2 2]1/2
(V,'R) + [(vp R)S +v VP] )

Hence, since we require V5, >0 and v > Vb , the correct

solution is

1/2
o a a o A Y 2
= - A + . + - : 3.4.1
v, Rp{ (B [(Vp R +v Vlz,] } ( )
Similarly, by setting V, = + ﬁpvz , Wwe obtain
+ A - + a2 2 _291/2
= + + . + ‘R + - % 3.2.4
v, RP{ B8 #: (SR +.5° < 0] } ( )

The required planetary aﬁproabh trajectories vhich will
generate these post-encounter velocities can be calculated by
the method given in section 3.1, using equations (3.1.9)
through (3.1.14). The post-encounter trajectory generated
by (3.2.1) will take the vehicle directly into the sun along
a straight line. On the other hand, the post-encounter
trajectory generated by (3.2.2) will take the vehicle on a
straight line away from the Sun until it reaches a certain
maximum distance. It will then fall back along the same
straight line directly into the Sun. The post-encounter
trajectories in both cases will have eccentricities equal to 1.
If wv< Vp » @& solar impact post-encounter trajectory

with eccentricity 1 will not be possible. It is interesting,
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therefore, to consider the following question: Will the
minimum energy post-encounter trajectory generated by the
?2 given in (3.1.7) also be identical to the trajectory
which will pass closest to the Sun (i.e., have minimum
perihelion distance)? The answer to this question turns
out to be true only under certain conditions.

Let q denote the post-encounter trajectory's peri-

helion distance. Then

q = a(l-e) , (3.2.3)

wvhere we assume that the trajectory is elliptical. Since

we will be concerned exclusively with the vehicles post-
encounter trajectory, the subscripts will be omitted from
the various orbital parameters. We shall now determine the
vector ?2 , Which will extremize this function. (As soon
as a required 32 is determined, the corresponding planetary
approach trajectory required to generate this departing
velocity can be obtained by (3.1.9)-(3.1.14).) As in the
previous section, the extremization of a certain function
can be accomplished by the lagrange multiplier method with
F; = 0 acting as a constraining equation. Hence, the ex-
tremals of q will be the solutions to the following system

of equations:

oF
99 _ — =
3ax kl X 0
g _, %1 _
oy 1 ay
oF
89 A\ e = B

Bz Kl 9Z

1 =
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The first three equations become

ga e _
ﬁ%;(l-—e) - a %E - le(x-ul) =0 |

_8a oe _
S(-e) -all-24G-u) =0 | (3.2.4)

aga ge _
g—z-—(l-e) ) a%;z-- 26z (z-uy) =0 )

By making use of the fact that

.2 s
e =1 -
ah?
and
i2 o R2v? - (&2
%2

it follows that

e, b 86 1 2 J

X 2a2e oxX _ aeyg [ Rx R}.(ﬁ 7)]

pe . _& ga _1 2y L Ro(RT

0y 2.2, 08y | aeug [ R% - RyR-W)]

‘ge - _X_ _ga )
9z 2a2e 0Z  aepg

[ ’%z - Ry(RV].

Now, from the orbit energy equation (1.1.23), one finds

o _ 2%

0x Heg

oa _ 2a°

oy Ks Y
2

na _ 8, .

0z Bg

When these results are substituted into (3.2.4), we obtain

+ap Vg =V, (3.2.5)

ﬁm¢

Oy
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-+ =+

vV
2 _
where a; = §§IEE (3.2,6)
R2 - (1~e)2a2
az = ]_ - P (3.2.7)
20 kg

Hence, in view of (3.2.5), we obtain
- - —
(VP - CL]-RP) X Vz =0 . (3.2. 8)

1f, instead of extremizing the post-encounter trajectory’s
perihelion distance q , we extremize its aphelion di stance
Q = a(l+e) (where we assume that all post-encounter trajec-
tories are elliptical), we could repeat the above calculations

and find that equation (3.2.5) would become

e
SR, * B2 =V, (3.2.9)
where
-+ =
~ZpV2 (3.2.10)
B, = - - =L} A
1 1u-se 1
| Rﬁ - (1+e)2a®
8, =1 + ) (3.2.11)

lepse
Hence, it follows from (3.2.5) and (3.2.9) that the post-
encounter trajectory which will either minimize its perihelion
distance or maximize its aphelion distance must lie in the
orbital plane of P; . This is a very interesting result since
the pre-encounter transfer trajectory Py - Pp may have any
arbitrary inclination relative to P;’s orbital plane.

Suppose we assume that, at encounter, P, is either at
its point of aphelion or point of perihelion in its orbit

-»

—_
about the Sun. Then Vp 1 Rp . In this situation, let 62

be chosen to be the departing velocity vectory which minimizes



the vehicle’s post-encounter orbital energy. Hence, Iﬁz
is defined by (3.1.7). 1In this case a; = 0 , and (3.2.8) is
satisfied. This suggests that these conditions might also
satisfy (3.2.5), in which case the trajectory would also
minimize its perihelion distance. Since (3.2.8) does not
imply (3.2.5), it is necessary to perform some calculations.
First, it is clear that the post-encounter trajectory will
be at its aphelion point immediately after encounter (i.e.,
R will correspond to the post-encounter trajectory’s
aphelion point.) Hence, Rp = a(l +e). Also, in view of
the energy equation, the post-encounter trajectory’s semi-
major axis is determined:

a = _Esﬂﬁa__z .

= ZpS—prz

where V, =V_ - v . Consequently, it follows from (3.2.5)

P
that

[L-a0 - ?‘ip)]ir"p = 0.

Hence, if (3.2.5) is to be satisfied, we must determine if it

is possible to choose Ay such that

v o
1-0.2(1-"'\?1_))—0.

. By making use of (3.2.7), the equation becomes

Rﬁ - (l-e)2a2 R2 - (l-e)za2
> + |1- -8 ] = =0
klpse 2hlpse

v
P

This equation can be written as
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v
v
Rg-—(l-e)zaz-FZhlpse —P

7] = (8
l_._._.
vP
However, since
Rp = a(l+e) ,
we obtain
v
B V')
94 ke ] =0 .
. 1. 2 v
a 1 - v
P
Therefore, if
v
2 1 -V
% B8 Be | el
1 B v ?
S v
p

equation (3.2.5) will be satisfied. These calculations can be
repeated for the case ‘when 32 is defined to be that departing
velocity vector given by (3.1.6) which maximizes the post-
encounter trajectory’s orbital energy. In this-situation,
equation (3.2.9) will be satisfied. Consequently, we obtain

the following interesting result: Suppose a free-fall inter-
planetary space vehicle encounters a planet Pl with relative
speed Vv < Vp when the planet is at its aphelion or perihelion
points. Then the vehicle’s post-encounter trajectory which
minimizes its orbital energy will also minimize its perihelion
distance. Similarly, the trajectory which maximizes its orbital
energy will also maximize its aphelion distance. If the planet
is not at its aphelion or perihelion points when encounter occurs,
then it will be impossible to extremize these properties simulta-

neously with one post-encounter trajectory in either case.
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Except for Pluto, all planets move about the Sun in very
nearly circular orbits. Hence, ﬁp-§P ~ 0 will almost
always be true in practical situations. Therefore, approach
trajectories which minimize energy will also minimize peri-
helion distance. Those that maximize energy will also
maximize aphelion distance.

If the gravitational fields of Mars or Venus are used
to deflect an instrumented probe on trajectories generated
by (3.2.5) or (3.2.9), the resulting distances of closest
approach will almost always be negative. Therefore, as in
the previous section, it will be necessary to consider- the
problem when the distance of closest approach to the surface
of P, 1is specified as part of the initial conditions
(Po,to,Pl,tl;d) . Proceeding according to the method of
Lagrange, the extremals of q will be found by solving the

following system of equations:

oF aF
a9 _ . 1 _, -2 _
3xX kl ax A2 ax 0
aF oF
M = }\ -_..._.1_ - }\2 "T_g = 0
ay 1 a3y oy
oF oF
89 _ .. 1 _, "2 _
8z M 92 A2 32 0
F1 =0
F2 =0 3

where F; and F, are given by (3.1.1) and (3.1.17) respectively.

In view of our previous calculations (i.e., equations (3.2.3)
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through (3.2.7)), it is obvious that the first three of

the above equations can be expressed as

— -+

aiﬁp + agVy + agvy = VP P (3.2.12)
where oy and o, are given by (3.2.6) and (3.2.7)
respectively, and where ag = - Ay . This equation implies

that, in general, the post-encounter trajectory will not be
in the orbital plane of P, .

Finding the extfemal values of q and Q subject to the
two constraining equations F; = 0 and Fp = 0 1is most con-
veniently accomplished by using the constraining equations to

express y and 2z as functions of x and solving the equations

=0 L-o.

&la

Although the resulting-functions %ﬁ and %g will have com-
plicated forms, the equations can be easily solved with the

aid of digital computers. The functions y(x) and 2z(x) are

given by
.
o] i:‘V/d - 010
z(x) = A 2 1%3
91
) Y - VX - z(x)
xX) = "
¥ Vo
where
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y-vyX y-vyX
~ 03 = (x-Zul)x + [-_\;-2__ - 2112] (T) + g

Since V, £ v + V_ the domain of x will be contained

in the interval [-(v + Vp), (v + Vp)]

Before closing this section I shall consider the
following problem: Suppose P, and P; have circular
co-planar orbits. Suppose also that P, - P; 1is a
Hohmann transfer. (A Hohmann transfer is one which sweeps
out 180° about the Sun and is tangent to both the launch
planet’s orbit and the encountered planet’s orbit.) What
is the launch trajectory’s absolute minimum hyperbolic excess
velocity v, at Pg such that, after encountering Pi
the vehicle will escape the entire solar system? (The
distance of closest approach is to be disregarded.) It is
interesting to note t@g;ﬁthe radius of Pl’s orbit is not
given; hence, this must also be determined.

First of all we shall use the fact that a minimum energy

escape trajectory is parabolic. Now, in view of (1.1.23),

R _p
a = P_S 2 -

2}.[.5 - RPVZ

Therefore, if the post-encounter trajectory is parabolic, a = o

or

2
2 - RV2 = 0 s (3.2.33)

We have seen in the previous section that a GQ given by

(3.1.6) will give the probe a maximum energy post-encounter

trajectory. 1In this case, Ng = Vi + VP . Hence,
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2
Zps = Rp(vl + VP) .

-+ =
Since AV = v [2(1 - cos @)]1/2 (where ¢ = ¥ Vp,vl) then
to obtain maximum AV from P; , & should be 180° . This

means that the orbit of P1 must be outside the orbit of Po'

(See figure 8 ). Consequently, vy = VP -V, ; and we
obtain
g = a/RP(ZVP-Vl) (3.2.1%)

Since P, - Py 1is a Hohmann transfer, its semi-major axis
agy 1is given by
2a01 = Rp + R .
Also, since P; has a circular orbit, P’s semi-major axis
ap must be equal to RP . Consequently, by making use of
the energy equation (1.1.23), equation (3.2.14) becomes
e (o) () ]}
R sS\R R +R
P P P op

This reduces to

The solution is

RP = 2(1 + /2 )R0 .

Hence the minimum launch hyperbolic exXcess velocity is

1/2 1/2
v, =V, ~ V(2,) ‘—‘(?) {2(’\/?'1) "1}'

o] o o

For the case where P, = Earth (RO =1 A.U.) , this minimum

required hyperbolic excess velocity is §.58 km/sec. The
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- Orbit of Pj

Orbit of Pl

Figure 8. Hohmann transfer to Pl resulting in parabolic
post-encounter trajectory
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radius of P;’s orbit is 4.83 A.U. The semi-major axis

of Jupiter’s orbit is 5.2 A,U. Its orbit is almost circular
and coplanar with the Earth’s. Hence, the calculations sug-
gest that it may be possible to use minimum energy transfer
trajectories to Jupiter to achieve high energy post-encounter
trajectories which escape the entire solar system. Detailed
numerical calculations indicate that this is in fact true.

In order to obtain a parabolic solar system escape trajectory
via a direct launch from Earth, the required launch hyper-

bolic excess is 12.43 km/sec.
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3.3 Approach Trajectories which Maximize Post-Encounter

Orbital Planes of Inclination

In the previous two sections we have determined Gravity
Thrust trajectories designed for unmanned instrumented
probes of interplanetary regions close to the ecliptic
plane. In order to obtain a complete three-dimensional
environmental study of our entire solar system, it will be
necessary to explore regions of space far above and below
this plane. The classicalbrute force"direct ascent trans-
fer trajectories into these regions will require very high
launch hyperbolic excess velocities Yo ¢ These missions,
however, can be accomplished using Gravity Thrust trajec-
tories with only a small fraction of the direct transfer
energies.

Referring back tguf}gure 7, we notice that, if vy, > Vp’
it is possible to give ﬁz ény desired direction. 1In this
situation, it is possible to obtain post-encounter trajec-
tories which have their orbital planes precisely perpendi-
cular to the ecliptic plane.

Let K denote a unit vector pointing above the ecliptic
plane and normal to it. Let R be a second unit vector

defined by 2 . (ﬁ - ;
-P P

iﬁp x (X x‘ﬁp)l '

R =

These vectors are illustrated in figure 9. If the departing

velocity vector 62 , defined by

V2=V2R,
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>

—
R
~——F _ _  _ _ Ecliptic plane |

Sun

Figure 9. Post-encounter 90° out-of-ecliptic orbit
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ot
is substituted into the energy exchange equation, we obtain

L i g 2 o li2
Vo= VRt [ RZ D]

Since V, > 0 the equation gives

o - A2 2 .2.11/2
Vp= Vo R+ [( R vH]TT
2=V, (Vo R + (v*-v9)
In a similar manner, if we define
.+— ~
Vg = = YR
we obtain
” - 1/2
- - & o 2 o2
Vp = -(VP-R)+[(Vp R) '+(v1-VP)] ;

-t
Hence, the two possible departing velocities V, which will
generate post-encounter orbits normal to the ecliptic plane

are

v, = {(%’P-ﬁ) ‘ [(%’P-ﬁ)2+(vf-v§)]1/2}ﬁ (3 5.0
and

. Lo I 1/2 4 .

v, = {—(VP-R) + [(VP°R)2 + (vi—vi)] }R : (3.3.2)

1f Gp'ﬁ > 0 , then the post-encounter trajectory generated
by (3.3.1) will, in general, reach a greater distance from
the ecliptic plane than the trajectory generated by (3.3.2).
On the other hand, if ?p*ﬁ < 0 , then the reverse will be
true. The required planetary approach trajectories corre-
sponding to a given initial Po~P1 transfer which will

generate these post-encounter trajectories can be easily



computed-by equations (3.1.9) through (3.1.14). These
Gravity Thrust trajectory profiles can be obtained by using
the gravitational field of Jupiter. The required distances
of closest approach associated with relatively low energy
Earth-Jupiter transfers are sufficiently great so as to
avoid any possible atmospheric drag at encounter.

Unfortunately, if the fields of Venus or lMars are used
to obtain high inclination post-encounter trajectories, the
required distances of closest approach will be negative.
This difficulty can be resolved by giving the distance of
closest approach a preassigned value. Hence, our problem
becomes one of extremizing the post-encounter trajectory’s
orbital inclination i , subject to the given initial con-
ditions (Po,Pl,to,tl;d) . Let ¥ denote a heliocentric
ecliptic coordinate system. Then

_ h
e D
COS y h .

Hence, the problem of maximizing i 1is equivalent to the

problem of minimizing the function

This can be carried out most conveniently by using the two
equations of constraint Fy im0 and Fp, = 0 as a means
for expressing y and z as functions of x . Hence, the

problem reduces to that of finding the solutions of

75

Se=0 . (2:3:3)
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Although the function %% takes on a rather complicated
form, the solutions to (3.3.3) can be easily obtained with

the aid of a digital computer.
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